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METHODS OF DETERMINING MATURAL MODES AND FREGUENCIES OF :

SRANSYERSE VIBRATIONS OF BEAMS

GHAPTER I é
INTRODUCT ION

Mach effort has been spent in finding exmct solutions of the
differential equations of vibration problems. In only the simplest of struc-
tures, viz. the uniform beam, is it possible to determine rigorous solutions
that include the effects of rotary inertia and shear resistance of the beam.
For beams whose cross section varies it a simple manner along the axis of the
bear it is possible, thoogh somewhat difficult to obtain exact solutions that
include the effects of rotary inertia. For arbitrary variation of the mass-
density distribution and arbitrarily changing elastic properties along the
axis, even if they ars expressible in analyticel form, it has not beez found
possible to obtain exact solutiors. Consequently the emphasis of this report
lies in obtaining approximate analytical methode rather than in working out
the solutions of the differeatiml equations of & class of beams with, say,
cross sections that vary according to simple analytical functions along the
axls of the beam. The differertial equation of the problem will be developed
and 1t willl be ssen that it does not lend itself readily to the de‘ermination
of approximate numerical solutions. It is much more advantageous to set up
‘he problem in its integral equation representation, because integral equa-
tions can easily be solved by approximate methods. Tne reason lies in the
entireiy different approsch that leads to the integral equations iz contrast

wih the differential equation zethods. The differential equation cconsiders
ALRO-ELASTIC AND STRUCTURES RESEARCH
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% the olestic structure in its elements: it studles the motions of a particle %
; 5
; of the aggrezate that makes up the structure and builds up -~ by integration - §
it E

the motions of the structure as & whole. These muet te compatible with the
conditions of support, arnd it is here that the real difficuilty and Jaborlous-
ness of the differential equation procedure enters:! the solution of the bounds-
ry-value problem, or the evaluatiorn of the constants of integration. The
g integral equation considers the elastic body as a whole and it has, 8o to
spealk, all the boundary conditions of the problem written into it. It is true,
that it builds up the motions of the bedy from "elements”, but these are not
those of isolated particles but simple motions of the whele structure. The
integral equations are not the only ones that consider the body as a whole,
for the variaticnal methods, better imown to the engineer as ensrgy methods,
also formulate the problem for the body as an entity, and it is convenient to
say that mechanical problems of vibrations can be stated in either differen-
tial form or in integral form. Eere, attention is focused on the integral
formulations.

A few comments have to be made about the term "exact solution" that
ras Deen nentloned above, i.e. it has to e stated under what set of condi-

tions an aralytical sclutiorn shall be called exact. The equations of the

Ay YT

problem shall De linear. This lizmite the magnitude of vibrations to so-called
szall viorations and it reguires linear stress-strair relatviornstlp. Furthsr-
zore the sluplified beam theory shall be valid. This mears that the Bernoulli-

Navier hypothesis =~ plane sections which are normal to the undeformed elastic

L g

axis remain tlarne axd nornwl to the deformed eslastic axis - is valid, and thus

ary exsact solution le 20t rigorous in the sense of the matnematizal thesry of

T ] TS | Zoeim ! 1A B
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elasticity, as the wavrplug of the cross sections has been neglectsd. (Ses
Chapter 11I also.)

The following section demonstrates & few mathematicel principles

that wiill frequently be drawn upon in the snsuing analysis.
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CHAPTER 11

MATHEMATICAY PRERFCUISITE

1. Notations, Matrix Calculus

Matrix calculus will be used extensively in the following sections.
Toue it is necessary to list the notations that are used in this paper. They
are in accord with continental practice, offer the advantage of simplicity and
economy of print, and are clossly related with indicial notation.

In irdicial notation - as it is used hereafter ~ the convention is
established that, if an index occurs more than once in a product, a summation
over the index is to be carried out over & number of integers ranging from one
to n, unless otherwise specified.

For example:

@il = Xack [ acky = X &by agv,-Says,

al-'J éjé L;/x = Z; Zéa‘dbie Qk = E d?' (2243 g,,/ =

= g, ,, ,g e 154 A’)-f ‘?“-/bu CM.{ ' *ba.n‘ 6;4/«’) ’ -
) ‘a. . (1)
le._/b));f /(*“H ‘é)’”‘ 6;74A’) '

The ranges of the indices 4,5, k,1 shall be Bys Doy n3, 0, respectively.
Matrices are designated by arabic capitals; vectors, that is,

matrices with either one row or one colum only, by lower case arabic letters.

Row-vectors have superscripts, column-vectors have subscripts. 3old face

ietters (or underlined lettere) snall be used where confusion of matrices

with their slemerts is possible. The following are equivaleat notations of

01 WLt TAPL-Dei aited ¢ riugnralt WA, L okl
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§ &1 merov n-column matrix, or an o by n matrixz:
] g
fa,, QH."'a/a é
a&
0!! a!}. P Qw - , @
Pt e ey - As(@ana) s | s A
Gry Qg oo Cunn [ Ces -, m &h
L"l,"'/”"
G
A.n
- - : s €
é'.-ar -~ . I § =a = (asua.s&,""; asa.)
Amp
o also: 8w={0.,., Gu.,-m-‘~~~,4,,,,.} . (2)

Multiplication of a metrix by a scalar, - as multiplication of every element

of the matrix bty the scalar;

)\._A_ = (ray) (3)

Addition and subtraction of matrices, - 28 algebraic addition of corresponding

elements of the matrices. {(Corresponding means situated at equal plasces,

having the same address or ccordinates)

A-B +C=D-=- (diy ), where  diy= ayj-biy + Cy
(4)

Addition ard subtraction are associative and distributive but are, of coursse,
restricted to aggregates of matrices which have all the same number of rows
and the same number of columrs.

Multiplication of & vector by another vector, - the familiar gcaler product

cf vector algebra is written as;

b,
absabela g ,ah/b“

J e |
’ k’l / (
pP\ 4 w——— -« s o, — - ~rwmew T Y wPTVE T o R o X al e
AERC-ELASTIC AND STRUCTURES RESEARCEH
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end with it, the multivlication of matrices by vectors and matrices are easily
defined. The ' indicates transpositions of rows and columns. (The dysdic
product of vectors is not needed hers.)

Multiplication of a matrix by & column-vector, - is & new column vector whose

i-th component is the scalar product of the i-th row vector of the matrix with
the column vector:
q;\ Qik ‘
Ab = ¢§ B = ‘zeig} ; with @ &) Qo b
ééna a~b

Multiplication of two matrices, ~ is a new meitrix whose ij-th element (that

is, the i-th component of the Jj=tbh column vector) is defined as the scalar
product of the i-th row vector of the first factor-metrix into the J-th column
vector of the second factor-matrix. The two matrices must be compatible, i.e.
the number of the elements in ths rows of the first metrix must be equal to
that of the elements in the columns of the second. Symbolically the product
is defined as;

3 enahd
2 b,
CEAB= (b b b. )= - LT la

s o —_

< B - = e, ,(9}
gam ﬁhl, a b ’”é%!} r - {7

:,~»,5
The matrix product is asscciative, distridbutive but not, in genera;, commta~

tive. The followirgz relations are true;

(ABjC= ABC)

(A+B) € = AL+ BC
48 ¢ BA (8) |
AFRQ-ELASTIC AND STRUCTURES RESEARCH :
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Maltiplication of & matrix with special matrices, viz. unit-meatriz, arnd

i i it ]

§
diszonal matrices. The leading (or main) diegonal of & square matriz is the |

line which contains the elements with two equal subscripts, (ayy). 1% is
only defined for square matrices. A matrlx whoee elements are all zaro is
H called the garo-matriz. If at least one of the elements of the leading diasgo-
nel of a square matrix does not vanish, while ell others are zero, then it is
é a dissonal-mairix. A dimgonal matrix with elements all squal to unity is

called unit-matrix. A dlagonal matrix with elements &ll equal to & scalar

is called & gealar-matrix.
]

e
The unit matriz, E-(e.,.--.e.,ys én s (4’»;')»'

b hae the property, AE== EA:“A . (9

40 - 0
04--0
0O 4

dy O 9
The disgonal matrix, [ - 0d, " 0
00 Am

can either premultiply or postmultiply & matrix A , yielding DA and AD
respectively. Premultiplication by a diegonal matrix multiplies the rows of
the second factor -, postmultiplication by a dlagonal matrix multiplies the

rows of the first factor - by the corresponding diagonal element, viz.:

d‘\au d"al.! v 'd\@\v\
didu  dig, - d,a.,

Asady,  d \
:% 3 "tasz 4?0“ ") A@ .

\d‘*\ a"h J‘”a”ﬂ—'” di"\ai\-.j

d|a-| dkafkt dBQ's U(R a.n\
d.a, d;;(?.,,_z_ d‘s?«u dv, (N

DA~

1

\d1am dta'm dba’v-.s d“‘a""" (10)

Hersated products of matrices with the same factor are writtsn as

IR 2 AT R O S s T T (PR e, RN

“n

powers of that matrix. The zero~th power of & matrix is defined to Te the

unit matrix:

7]

F
e R T T W R T R s S T
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= A i

o A 2 2 - *
A‘E,‘ BB A-AA, AAT= AT (21)

Operations on metrices that are frequently used are defined next.

Transposition, - is an interchange of rows and columns and designated by &

prime '. Thus (ﬁ)"ﬁ . The transpose of & product is equal to the product

of the transposed factors, in reversed order,

(A E}%“ B'A (12)

for, 4 Lo AB = (Qiby) =(Cy) : en

| ,
C = iey)eie) - @ie o) = (bud)(2g)' = B'A".

The inverse (or reciprocal) of a matrix, - is defined as that matrix

whose premultiplication, or postmultiplication, with A gives the unit

matrix E , viz.:
AA=AA'=E

The theory of determinanis showe that the ij-th element of ths inverse matrix

(12)

is equal to E

c.f a.

(g - <L %
LA (1)

where C.f dil 1s the gofactor of the element @4¢ , and det A=1Al the

determinant of the matrix A .

AT

More details may be found in any text-book on linear algebra. 4n easy exposi-

tior is W. L. Ferraxr's, Algebra, Claredon Press 1941, and a very clear snd

Bad:bed Toitha | ki, A1 vontn R\ gl A

-

il
3
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more advanced treatiss is R. Zurmihl's, Metrigen, Springer 1950, (in German)
The inverse of & product is equal to the produci of the inverss of

of the fsctors in raversed order:

(AB) = BTAT,
for then-only: (A%}@Q %?" = A%B"‘,&-ﬁs AEAQS ﬁA-a‘-‘s E .

(15)

Frequently multiple matriz products will be encountsred which
originate from multiple summations, and the problem c¢f writing such summations
as matrix products arises. Thus & few typical matrix products will be written
in summation form. Only the ij-th element is listed. The ranges of i and J
are one to o and one %o n, respectively.

1. le: the simple summation Sy~ Qb » X Qs bix  isgiven.
I7 the order of the indices in the second factor were to be reversed this
sunmation would coincide with the definition of the matrix product AB .,
As & simultaneous reversal of the indices and transposition leave the sacond

metrix unchanged, by« (b,s)). the following is true:

S=(sy) = (Guby) « (ew b)) = AB'.
(16)
If the individuel producte &y b)x‘ in the summation Z;‘ Ax bg,'
are multiplied, or welighted, dy factors, dﬁ, , that is, if the sumnation
5;“56‘-5 b#!.af{ iz given, observe that the weighting factor {or numerical :

intagration factor) carriss the colwmn index k of the factor <&, . This

means that every column of the matrix A is tmultiplied by a certair factor

QR AR &
AR RO 2511 AN 4L ONE 8}, RArskaldis

=rzrFe
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g d,( . The second of the equaticas (i0) on page 7 shows that such a matrix g
b 5
. 18
: d

-
is the product of & matrizx A , postmultiplied by the disgonal matrix ‘13:(6;‘&{)“
w

Thus one obtains:

S”( Siy) = (avcuéx/g/« : ((Q:«/J(bx;)’)= ADB,
‘ (17)

which is also equal to, S = A(BD)’ ; Since D = D

2. Example: given the mmtirix S whose iJ-th element is defined by the double
sum: Sy T Ay by, Cq. . The object is to write S as a matrix product.

If one sets p,. - @, b, , the problem is reduced to that of the first ex-
smple, for than, S, = Qb Coi = P Cop

This is the ij-th element of the product PE , where P=AB , and, since the

matrix product is associative, there follows:

S = (8y) = (4"&4& Cp;') * (as'b)(bhﬂ)(cx;'/ = ABC ,

If the two summations, over h and k, are welighted with two sets of
factors, say, N=(’n“) and M=(777,,,,) , & doudle sumation of the following type
is obtained, Sy = QA bhk’ T M and it can (using the result of the rre-

vious exemple) be written as the i1J-th element of the matrix product listed

Palow:

*

N 0 i 0
S5 - ANBMC,; N (”ﬂ)s(éff‘rrﬁ,) , M=l = (c;-f‘-‘r%,()

If tne order of the indices does not agree with the cne listsed
above, transpositions must be made. Not all summations can, of course, be

written es typical slsments of matrix oroducts: the indicses of the factors

AT TYWA TVE A A RIFY OTYIFNT 14T 1ERNEOLS OMZNETOTE A YR

FMU'M'!L AN DI NUCIURELDY RLOLARLD

LTS T T W TN
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e st |

rmist be such that they can be arranged so that the firast index of & factor

]
; ig the same ac the last irndex of the preceeding factor. The number of pcssi-

ble waighting factors is ine same as the number of summetions. Seo, for ip-

: o= ™ N I
stance, the quintuple sum: Sy Gc‘buc?mdmewﬁ‘, N O.P - where
B Oy, Op Py Q. BT weighting factors, can be written as the ij~th sle-~

ment of the matrix product: S = (Siy) = AMBNCODEQF,
Summat ions, as they have been illustrated in the two examples, will bYe

encountered when certain integrals are evaluated numerically.

Another concept of greatest importance and frequent application is

the problem of the series expansion of arbitrary fusctions. It will be re-
viewed bdriefly, in somswhat more general form than it is found in the usual

texta of methematical physics, such as H. & B.S. Jeffrays, Mathematical

Physics. Cambridge University Press 195C, or R. Courant & Hilbert, Methodea

der mathematischan Physix, Interscience, New York.

Formulation of the problem:

Given & set of nom-overlapping subintervals of the line, i.e.
intervals of the form: a, € x é—bi. In this are defined a piecewise contine
uous function f£(x) and a set of functions, designated by {90[‘37\ . All the
functions are subJect to ths following restrictions:

(1) They must ds integrable square, i.s. their squares must be integr-
able in the interval.

(2) All izner products of the fuanctions must exist in the interval.

Recall that the inpar nroduct of two functions z{x) and h{(x) over

the interval 8 £ x¢b 1is defined as:

Uial dda

Ay T AQTHT™ 4 AT C’T‘DUf‘T‘! ra CCT ADLg
ACLS W P Y S NLVEN SN RS W Ve S vl LR WLF
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b
(gehrade 2(3,h) = (h,g)

The inner product of & function with itself is called the porm of the funetion

and writtan as:

Ng =(3.,49) = fa’ﬁxg dx .

introduce the following abbreviations:

(50'6: $n) = bpﬁ = b
= € (18)
([, ) = T the M -component of f in the ¢'s
It is desired to approximate f{x) by & linear azzregate of the ?'s,
f=flxiz a, @00 . (19)

in such a way that the approzimation is best in the least squared errcr sease,

i.e. that the integral over the square of the error is a minimum, viz.

M .-j([—f}t:!x = Af(}’-f):/ff./‘; /‘f/ = minimum. (20)

The problem consists now in determining the expansion ccefficients

a}; in such & way that M(x) takes on its minimum value. This implies thet all

the partial derivatives of M with respect to all a, must de zero:
aM /;»a}, =0 for ell 4 s 1,2, ... B. (201)

This set of n linear non-homogensous squations determines the ay-
Carrying out the partial differsentiation:
D 9 { dp ]
37"/36,?’\“'/Da,ﬁ)jL{f—&ym’“d‘ - 2.5{ av ¢y ,_,,i Ax

and not.cing that 9[{* av ?e]/?a,,: -“?}A, there follows:

B T IO I R S
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am r _ i

aaf = -2 S‘{"QV%] 5’?/4 d = 0 . Canceliing the factor -2 and performing

the multiplicatisn ir the intezrand, ons obtains:

{Fgéﬁa(x - Q,S Y %‘ dx=0 (as &, 1is a constant factor)

which can also be written more converlently as an equality of inner products:

) P) = @ (Po ¢0) . (20m)

With the abbreviations (18) this equation can be written as:

€ = Ba (22)

whers B is the matrix of the b, , asd € and 8 are the column vectors:

C;{Cucl,"! Cn} y) a“{QQQt,“‘Jah}
Equation (21) has the solution: g =~ B¢, (22)
The ij-th element of the Laverse matrix is given dby: (b.-é)—"—’ c.f by /A8l
By virtue of the imposed restrictions, ¢ exists (i.e. is finite),

and thus & exists if,and only if, B exists. This implies that the

determinant of the matrix B must not vanish, viz.

i8)+ o . (23)
If one writes this in expanded form, and introduces the definition of bi.j’

ore arrives at the fundamental equation, the so-callsd Sramian,:

L R T Y e L AR R I

@ - (e, &) (231}
fﬂv((lp’/?b("'l an) = : . 0

o

which tne functions {’{} must satisfy, in order that the expansion {19) is

B AP g

possible.
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The non-vanishing of the Gramian implies that the functions

are linearly indevendent, for, Lif this were not so, & relation

a’,sq+a/;%_+~»+q{19;,, = O (24)
with not all coefficients d; zero would be true. To prove this, note that
from equation (24) any of the ¢ 's can be expressed &s & linear combination
of all others. After introducing this into the equation (23!) one obtains
& determinant with & column that is & linear combinstion of the other columms.
But such a determinant is always zero, hence equation (24) cannot be satisfied.

Returning to the expansion problem, the approximation f(x) (eq. 19)

becomes with eq. (22)

-

~ Pyt
anufv':b%%u%zyac-
Obviously M(x), as & definite integral with non-negative integrand,

is never less than zero. From this remark a generalized form of the Bgssel

inequality and the Parseval equality can easily be derived.

¥ wag glven as:

.
Mo SE-ap)dx - (f-af, f-a.0) = o
Expanding ané carrying out the integrations, with the adbdreviations (18),

this becnmes:
Nf-2a,(f4)raa. (g @) =
.N-f -Za,cC, ra,a, b = 0

Vaat vaL T /
end introducing a, from (22) as a, s é; (:/_ , one obtains:
AL - -t -1
Mf-28,¢¢ + by S by ¢, b, = o
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Since b% é; is the product of & matrix and its inverse and thus equal
to the unit matrix, ons obtains finally

the generalized Bessel inequality: b; C.Cu = NF . (25)

As the right-bhand side of (25) is independent of the range of the summations
of » and 44 from one to n, the sumnations on the left-hand side can e ex-
tended from one to infinity.

Fow, there always exists a number n > N such that the squared

srror M is less than ar arbitrarily small €, i.e.
r LJ
M=j[f-aplde < e if n P N.

In the limit n+ o M becomes zero and the Bessel inequality reduces to an
equality,

-1
the meneralized Parseval equality: b,ﬂ €, Cu = NF . (26)

The equation (26) can alsoc be called & generalized completeness relation.

An infinite set of lineraly indepsndent functions is complete if it permits
the approximatior in the mean (least squared error sense) of any piecewise
continuous function to any desired degree of accuracy.

It should be noted that the ecuation:

0 (27)

donn [[f -4 07 dx ,or Lot (f - &)

M e N - o
(1.i.m. means limit in the mearn)

does rot imply the equality:

f= 2244 . \28)

AT AN K

AFERO-ELASTIC AND STRUCTURES RESEARCH

hﬁ:.‘ 5 WO e s I ¥ - Lot AT z & z SRR = Py AR L8 z e o e R T T AT A e ST TR e




MASSACHUSETTS INSTITUTE OF TECHNOLOGY
Depsrtment of Acronautical Engineering

B R A AT B AT A5 Vit =l = = I z TR g v ST T raTn e e e nar s e

[
é
E

PAGE 16 CONTRACT NOG. ¥5 ori - 07833

The latter is orly aesursd, if the sequence of the {GLJD} converges uniformly
in the subset of the line, because only then is it permissible to move the
integral sign past the summation sign.

Vsry important for later epplications are the statemente:

Lemma 1t A plecewise continuous function is uniquely determined by its ex-
pansion coefficients in a complete systeam of functions; or also,

Lemma 2: Two piecewise continuocus functions are identical if they poesess the
same erxpansion coefficients.

The proofs follow from the fact that the difference of two such
functions with the same expansion coefficlents has an expansion with all
coefficients squal to zero. And thus, by virtue of the generalized Parseval
equality, its norm vanishes. But this implies that the difference itself is
zero, hence the two functions must be identical. The expansion coefficients
in a complste set describe a certein function uniquely, even if the series
expansion converges only in the mean and not in the usual sernse.

It has been shown 8o far that any set of linearly independent
functions is a complete set. Among these the orthogonal (and normalized)
sets occupy 8 preferred position, bYecause the determination of the expansion
cceflicients of a function in an orthogzonal system is greatly simplified, as
will be shown presently.

Two functions are said to be orthogonal if their inner product
vanishes, and they are normalized if their norm equals unity. Thus the set

{'yr} is orthogonsl and normalized if it obeys the two eguationa!

Ny, - w
orthogonality relation! ) = v ~“ (29)
(¥, W) { for ug
dormalizing equation: ﬁ!@@,; 7 Ferall wet2,... (3¢)
AERO.ELASTIC AND STRUCTURES RESFARCH .
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The equations (29) and (20) can also be united as

(%, %) = 2o (€)= E (31)

in which cass the set ("] is said tc be ortio-rormal.

S T

Witk equation {(31) the matrix B Dbecomes a unit matrix and thus

equation (22) reduces to:

a-c - (¥ (32)
vhich dstermines the sxpansion coafficients. They are the components of
in the set of thse ’\,y".

The Gramian (23') is now equal to unity, and thus, orthogonal and
normslized sets of functions are certainly linearly independent. (This re-
mains valid if the orthogonal set is not normelized, for the Gramian ig thea
equal to the product of the norms of the merbers of the set.) With R a
unit matrix Bq is also a unit matrix, and the doudble sums in the generaliged
forms of tkhe Bessel inequality and Parseval equality become simpls sums over

the c's with equal subscripts:

Bessel inequality fc: « NF (33)
- for orthogonal functions.

i
Parseval equality 2 &, = Nf (34)

¥ith squation (32) the approximation f(x) is given dy:

F = Y = (/‘"V/m ‘ =2, (35)

which convergee in the mean.

AERO-ELASTIC AND STRUCTURES RESEARCH
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TRANSVERSE VIBRAZIONS OF STRAIGET BARBS.

THRY MECHANICAL PROBLEM

1. The Differsntial Equation of Vibration (The Differentisl Approach)

Let a2 bean with variable cross section be defined as follows:

x-x is & straight line end N is a plane normal to it. O' is the intersection

of x-x with N. The boundary curve f;(x)} = £3(yy,z1ix) is subject to five
restrictions:
(1) Ot is the centroid of the area enclosged by £13

(2) ¥, and z, are the centroidal principal axzes of the area-

moment of inertis of the cross seciion;

4
-
P
”
~
.
o
-

4
tJ
n
>
N
3

(]
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(3) the y, and zy A%xes ars always parallel to the y and 2z axes
respectively;

(4) fl(x) i & funciion of x only and not of time,i.e. the cross
section does not change its shape during vibration. (If the
crosa section is hollow, rigid stiffeners must be provided to
prevent ckange of shape.)

The £ifth restriction will be formulated preseantly.

Suppose that some forces p(x,t) are acting on the bean in such &
way that they are in the %~y plane and normal %0 the x-axis. If the beanm
was initially at rest it will then vibrate in the x-y plane only when the
time depsndent forces p are acting.

In order to study the motion of the beam, isolate a small slice
which 18 cut out by two neighboring normal planes N and F', apply the inner
forces between it and the remainder of the beam as exterior forces and for-
milate the equilibrium equations. These state that the sum total of all
forces and moments, including the inertia forces and moments, of course, must
venish. Due to the simplifying assumptions, only two of the six equilibrium
equations (in Cartesian coordinates!) are not trivial, namely, that the sum
of the vertical forces have a zero-resultant and thbat the sum of the moments
about the 2-exls have a zero resultant moment vector. The following figure
shows the isolated slice of length 4 . The inner forces have been combined
into & shear force @ and 8 bending moment M. The indices M ¢® and A
refer to left and rignt. If the teams's oscillation is in the x-y plare only,
ther the lesuitant of the shear-stress intersities of the cross sectiosn must

be parallel to the y-axis. It is «nown, however, that this requirement can

AERC-ELASTIC AND STRUCTURES RESEARCH
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only then be fulfilled if the exteriox force acis througn the shear-center
of the cross secticn. As the forces p have beer prescribed as passing through
the centrold of the cronss-section, it is thue necessary to specify that the
shear center be in the x~y plene. It is also known that an axis of symmetry
of & cross section is a locus line of the shear center. Hence the restriction
which must be added is:
(5) the locus line of the shear centers of all cross sections

mist be in the x-y vlane, i.e. in the plane of action of

the exterior forces which is also the plane of vibration.
The cross section must vary gradually, otherwise the simple beam theory and
the theory of the shear center are no longer applicable.

(Detailed discussion of shear centers of solid cross sections can be found

in A. & L. Foppl, Drang und Zwang, vol. 2, paragraph 78, Oldenburg 1944,
Munich.) Some other dynamic restrictions will be discussed in latter sections.
‘ The figure shows the slice 4 x and
Me M‘V"
A the resuwltents of the normal - angd

Qf shearing stresses on the left and

right faces. The resultants of the

exterior and inertia forces are

designated by Pax apgd /-‘_1‘.&3(,.

e e e e e
al

C is the center of gravity of tkhe

gslice.

Neglecting the dead weight whicj is an effect of nigher order, the sunm of the

vertical forces must be zero;
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Q, - - ﬁ,gx = O
and the sum cf the moments must be zero:
Mo+ I e ax (R Q)2 + Max = O.
Dividing both ecquations by 4 x and letting 4 x approach zero, one obtains;
& +» P =0,
M R+ M "0,}
where the definitions:

M-————m‘z: = M, e &g R b Qo= b § = &

ax -+ O AX o ax g dr-» 0

have been introduced.

If only the free vidbrations of the beam are of interest, the forc-
ing function p(x.t) is zero, snd P and M become the d'Alembert inertia forces
acting per unit length of beam axis.

Due %o the postulated linearity of the problem it is permissible to
considsr bending and shearingz distortions separastely. The total deflection of
the bean is desigmated by y(x,t), the deflection due to pure bending by o {x,t)
the deflection due to pure shear by A (x,t). ~
Thus = oA + B (1)

v
The following two differentisl equations erpress o6\ 4in terms of the hending

moment M and bending stiffnsss EI, and A2 in terms of the shear force Q and
the shear stiffness GA_,. E is Young's modulus, G the shear modulus,

T
G =B/ 2(1+2), v = Poisscns's ratio for lateral coutraction, I = I, the

2
noment of inertia of the cross section about the Zq axis, 4, = A/k the reduced

crogss section. The valis of the reduction factor & will be derived

AERC-ELASTIC AND STRUCTURES RESEARCH
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later. . "
-£l = M
3
6Arﬂl = &: , :
(2)

The inertis force due to the iransverse motion of the beam is equal

to the negative product of mass dernslty per unit length of besam azis./u[xj s

mzl‘ciplied by the verticel accsleration "ﬂ— : P - -/M’%: . Bafore writing down
the rotary accelemtionrterm. which is equal to the nsgative product of the
mass moment of inertia per unit length of beam axis (about the zl--axis) times
the angular acceleration, it should be noted that the bending distortion
only rotates the beam slices. The shear deformation /3 mersly causes adja~
cent slices to slide with respect to each other. (This is the simplified
concept of the fsimple® beam theory!) For small deflections, the angle of
rotation 1s equal to the angle of the tangent to the beam axis, wbick is in
turn approximately equal to the slope u(' . Consequently the rotary inertia
forces per unit length of beam axis are given by M =-pI& . [p = #assdensity]

¥With these, the two equilibrium equations of the slice become:

K
Q'Ml"?ri\ » Q (a) q
& -pr =0 (v)
With o= -4 = 4 - Q/6A,  clmnafe « from (a) :
Q~M‘-§I%’+§Ié/éﬁ\r = 0, (e)

Differectiate (c) with respect to x:

Q- o (14) (o8} (/A)E ¢ (1/A) &' ] - o (@)

L e T T L N, L B R R T e e U 0 T e £ L R e T M A B A - T AT R IO

s

e

I

a
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end substitute (b) into (d):

Juiy, <M g (T (94 (an)e - (/4] =0 o

U ST

Express M by y as follows:
M= - €14 = -EI(y'-p")
- -EI4'+ EI Q/A)/ &
M - Ely's 200 I{(VA)Q ¢ p§ /A

differentiate Fwice with respecl To x :

M= -Erg)'s 2w T3 A1 14) 18] T

S AT A RN Y RO

(£)
and introduce (£f) into (e):
i« (EDy V=219 (uI§/A) - 2009 [0/A) 1G] - 9l14)" ¢ 1
v o[WAYE + wIK (A ) [E -0 .

Rearranging (g), integrating (b) and introducing it into (g), the following

integro-differsntial equation is obtained:

1) -¢(TH) ¢ pf nz(m)(ﬁzi‘g,/Af)” (uI/A)ey (6 =
- ot (/AT (x| - (g/a) (T/A)' g

(3)

From (3) &1l of the simplified equations listed in the literature can easily :

vte obtaired, for instance:

AERO-ELASTIC AND STRUCTURES RESEARCH
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|
g Free trensverse oscillations of & besm, including rotary inertis effects.
i
E tut neglecting shear distortion. The shear resistance is thern infinite, 1.e.
Poissonis ratio p = -1, G = oo . 8nd equation (3) becomes:
i
;
5 TR VA .s
(EI%) -8 (Ifgv ) s 20 (4)

This equation is listed in XK. Hohenemser & ¥. Prager, Dynamik der Stabwerks,

Springer, Berlin 1933.

Free oscillation of a priematic bar

effects. Sstting EI, M o A, constant and carrying out the differextiations

in {(3), ylelds:

EI/‘;‘— (ez*ngv)/AI/Ar) ‘5’)4/.4%’ + f/‘"l-’;;:./é’qr = 0, (5)

This equation is listed in St. Timoshenko, Vibration Problems in Ensinesring,

van Noetrand, New York, 1948; where it is integrated for some simple types of

toundary conditions.
Assuming harmonic meotion:
WA E
MLxtl = yix] 2 (6)
and introducing (6) into the equation (2) yields the ordinary differential
equation for the eigenvalue probdblem. 7’3: is the characteristic circular

fraquency of the vidbration. The aquations (3), (4), and (5) bvecome respec~

tively:

TV @Y -y «2(IA (e TY /ALY < Xgu Ty /54, -
w-2piw) A I(V/A) 5’#;“*}" ~X"(9/6) (I/Ar)’j}g. dx o B0

This is the differertial equation of the netural modss, including rotary

irertia ard shesr terms.
AERQO-ELASTIC AND STRUCTURES RESEARCH
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wy M 7L
7\, - = G
(Bx4') + A [ e(Tg) ~mg] oy
Thie is the differential equation of the natural modes, neglscting shear
sffacts, but with rotary inertia effects included.
E_Lkgm'q»l[(gfﬂi(ﬁ+93f*f/4r)fé"_/4.4%] .»75‘;?/41"}/.4,6 = g , (51)

Thie is the differsntisl equation of the natural modes for & priamatic bar,
ircluding shear and rotary inertia terms.

Equetions (4&!') and (5!) have been solved in Hohenemser-Prager's
ard Timoshenko's texts for the case of uniform beams with rectangular cross
section. They show that rotary inertia effects become great at higher fre-
qusncies, because then the nodal points are close together ani the contribu-
tion of the angular accelerations is of the same order of magnitude &s that
of the transvgrse accelerations. It seems possible to solve squation (&)
also for non-uniform beams, say, for an exponential variation ¢f the height
of the beam. The method of variatior of parameters will give an analytical
solution for the equation under the assumption that A is krown. The real
difficulty arisss when the boundary conditions have to be satisfied in order
to obtain the characteristic equation for the eigenvalues. An anaslytical
solution of equation (3'), followed by the boundary value problem, appears
to be much too difficult end tedious 1o be attempted here. TFurthermore,
beams encountered ir engineering practics have elastic properties and mass
distributions that car not readily be expresssd by exponential series aud

pover series and it ie conciuded that the differential equation epproacu is

S e T
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not the appropriate -ne for the problem. The integral squation methods and
variational methods will yield practical solutions. Before these are treatad
the derivation of the formls of the reduction facter "k' in A, = Ak is
given.

The picture below shows the side - and front view of a slice
of the beam acted upon by shearing forces Q only. ULet 1t be assumed that all
lengitudinal fibres undergo the same angulsr deformation, t.e. the creoss sec-
tion does not change its shape. Demote by 45 the shear deflection of an
element of length dx. One obtains an
equation for 42 from the fact thet the
exterior work dons by § diring dsformation
is equal to the strain-energy (interior

work) of the shearing stresses produced
by Q. Q undergoes & displacement #& and
increases slowly from zero to its final

value . Thus the potential energy of Q

is squal to:

A= Raf/2 (a)

The sirain enmergy of the shearing forces is given Dby:
7 T
A, - //26/;(’2‘/1/ (b)

Tre volume integral J2'¢¥ is equel to dxf’t’a% since 4V is infinitely thin
¥ A

and T <does not change over the distance dx . The shearing stress inten-

sity is given by:
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Values of k for some frequent cross sections:
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where Sz is the static moment of the shaded area aboul the zl—axis.

Thus, one obtains:

A, - (h/26) [T 74 ~cx/26) QS /R b)' AR [dA-haz]
A A

and since Q and Iz are constant for & given x (integration over y and z):

Ao = (4/28)(8/5) [(5:/8) a4 . ()

Equating (&) and (c¢): A, = A, there follows:

daB/z - (/26)@ /1) ;f(se oz

and solving for 4 A ¢

df =(Qde/6 L) _f 5./8) 4 . (a)

IR

One now sets!

we (AlL) [G/8)°dA .

The factor k devends on the cross section only. Witk it the differential

shear deflection is given as:

03 =k Qe f6A = QA/G] - Qdk/GA,,

which verifies the equation (2) on page 22.

Rectanzie: k = 6/5; solid circle: k = 10/9; thin-walled circle: k = 2.0.
For structural I beams one may teke with sufficient accurscy the factor k =
1.C and the cross saction of the web only: A/K a ben If one takes the

total area, x varies from 2.0 to 2.4 for very amsll and very large sectlons. :

AFRO.ELASTIC AND STRUCTURFS RESEARCH
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2. Varimtional Mathods. Intesrel Approach

a) Qeneral Comsent

Ir the first section of this chapter the eigenvalue problem has
besn formulatec by means of a differcantial equation and a set of boundary
conditions. This diffe.ential equatlon expresses an equilibrium equation
that must hold for any infinitesimml slice of the beam. But this i not the
only way of deriving the differsentisl equations. 0Ona could have utiliged,
nore elegantly, Hamilton's principle. For the development of the energy
methods this principle of least action (ms it is called) is the *natural"
approach to the eigenvalue problem. A very short and neat development will be §
given which is taken from G. Hamel, Thooretische Mechanik, Springer, Berlin

1949, and which does not presuppose a knowledge of lansrange's equations.

The derivation of the eigenvalue problem follows an article by E. J. Mihly,
Die gendherto Berechming von Eigenwerten elastischer Schwingungen anisotroper

Rirper, that appearsd in vol. 24 of Erg en Naturvissenschaft

ebnisse der n,
Springer, Berlin 1951, vwherein that author investigated the characteristic

frequencies of crystals.

y (of least action)

Lat dm be an infinitesimal mass element of & system, W its vectorial
acceleration, d‘ge aa exterior (impressed) force acting on it, and i7 a
virtual displacement of the particle. T is the radius vector descriding
the position of the particle, ¥ is its velocity which is equal %o the rate
of change of T: Vv = dP/dt.

Then, lagrange's principle states that the virtual work of tlhe

. ol & 3l al-a)
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inertia forces is equal to the viriual work, gAe‘. of the impressed forces or

(om WI# = (.47 = I (a)

From it one obtains lagrange's central equation (as named by Heun) by writing

dm wo? in a different way, i.e.:

jdmm'”;? Efc{m« dF > & fd’m oY - fJMV

¢ & F- JiF, and

AI7

_—-—-—’"’

But if the virtual displacements are possible

- - ‘J‘ . - oy J‘ %
Sdm Jy? _{dm.vé‘d'f: ',{@V&r "é.‘f“""’”’ which is equal to the variation of

the kinetic energy: 6 T. Thus there follows the gentral equation!

[dm @87 = G [dm 37 - 5T >

Introducing the central squation (b) into Lagrange's principle {a). one

cbtains: -
o% [dme FIF _ET = A,

An integration between % and t, yields Hamilton's principle in its general

form:

P
—
Ly

CA-
([t 7%

£

ts
‘Sr (c; 7.1" fAe) dl
¢,

if ths impressed forces possess & potential, i.e. 1if cFAe is &

dAag

Since the d'-

total differential e - 4 U, then Hamilton's principle appears in a

convenient form. process 1s indeperdent of the time variation,

) may be taxsen outside the integral sign:

-
ll ¢ s 2
36{,,,,*,?;@} =3§(T-wr~f«f é’f!_d% (2
n <, t, &)
AERO-ELASTIC AND STRUCTURES RESEARCH
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L is the Tegrarngian functiont L = T = U. The integral over L is called ths

Roid i L M

o
SR

5

action, whence the name of the principls. The variatiorn §F can be Dre-
scrived to be zero at t, and t2‘ Then ons obtains the usuel form of Eamilton's
prirciple:

ta
SW o= S (T-uye = 0 9 o

and one says that the integral ¥ o= V[hL dt 1is stationary in the actual
motion of the system.

If the system is an elastic cortinuum which vibrates freely (un-
influenced by exterior forces) then the potential U is equal to the strain
energy of the body. Thus one must express the kinetic energy T and the strain
enerzgy U in terms of the deformstions (displacements) of the elastic system,
introduce these intc Hamilton's principle, and thereby obtain an expression
which determines the displacements,

b) Formulation of the Eizenvalue Problem

The free vibrations of a body are defined as the simple periodic

oscillations which are not influenced by exterior forces. Thus, the deflec-

tion of the centroldal axis, which is repressntative of the deflections of all

the particles of the bar (as has been postulated), can be expressed as: H
y(x,t) = y(x) sin {wt+W) = {Oﬂ(x)* {5(3)} sin (Wt~ W), (&)

wnere y(x) was again divided into two parts, o (x) and ;3(::). wnich repre-

ﬁ sent the bending deflection and shear deflection respectively, viz.:
o.M , , Q

% i ) (3 < A . (5)

. AERO-ELASTIC AND STRUCTURES RESEARCH

3
B e e s

fres



MASSACHUSETTS INSTITUTE CF TECHNOLGOGY
uep&rtment of Aerorauhc&l Engmeenng

T T A AV TR Sy T SRR ST 2 e Tord TR T T T e

CONTRACT NQ.¥5 ori - 07833 PAGE 31

The kinetic energy ¢f the beam is obtained in the following way.

per unit length of beam axis is u= }x(x). the mass moment of inertia of the
beam about the z,-axls {sge figure on page 18) per unit length of beam axis
ip given by T= T(x). The translatory kinetic energy of the slice is equal
to Iu.;}zclx/Z; and the rotary kinetic energy is equal to "C’é/zdx/z. ( T 8
given by Sr) I,_.). Thus the ¢otal kinetic energy of the beam is expressible

&as;

7 S - T

(6)
The strain enargy, in terms ¢f bending moment M and shear force Q,

(.2
ig given as U=73% rM d/ET *ZL]G.O(X/G Ar . With equation (5) this car

te rewritten in terms of the deflectione as follows:

{ a
U=z [{eTer « car (8] ax (7)
The expressions for kinetic - and strain-energy can be put into & form that

shows better that they are quadratic forms in the displacements, viz.:

T =3 [at"i%] +%R£%g”§€"} (8)
U= Bl ] ¢ 3SiE ] (5

where tiie letters V and R ere used to designate the kinstic energy due to
vertical and rotary notion, and the letters 3B and S designate the strain-
energy due to bencing and ghear. Furthermore the rotation is similar to that
used for the inner product of two functions (see page 12). Comparing (8)

ard (9) with {(6) and (7) one finds tre definitions:

AERO-ELASTIC AND STRUCTURES RESEARCH
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T = %{V fyy] = R[B’»ﬁ'l}‘ cos* (Wt + ) (1)
U = T'Z{B [, "] + S (3']} csn® (Wt ey) (12)

whers o= w? ~ (12)

Eamilton's principle states that the veriation of ¥ must vanish for
any time interval t2 -ty If one chooses this interval to be an integer
multipls of oscillation periods, then the integrals over cosz(wt < %) and

smz(a)t + %) are squal, and ocne is left with the variational equation:

§{(BLx;) » S8, 67) =A(VLys) - RIE m)} <0 . (18)

Thie problem is equivelent to that of finding the extrems of the

so~called Bayleigh coefficient X(y) which ie defined as:

. B*S (15)

and these are, by virtue of (13), identical with the characteristic values
Ay = (.Oiz= For, if one sets ocut to find the extrema of & quotient (u/v) and

designates any such extremum dy 4{ = (u/v) p.+ one knows that the variation

ext

of (u/v) must be zero at every extremum, i.e.
S(U/V) = 03
and carrying out the variation, one chtains:
${wn) = (vdu - ugv)/{f"
Since v # O,

Slun) = (8u-ELsv)b = Su-£8v)=0;5 o §(u-Ly)=0.

Thue SLLL-XU):O is equivalent to Jinding the extroma of X(y).
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There exist two methods by which the quotient X(y) can be minimigzed:

(1) One makes X deperd on = series of arbitrary parameters &,, &,

cr By and determires these parameters in such a way that the

function K(y; By,..0,8;) 1s & micimne. This leads to the re-

guirement that n ecuations:

oK
32, - © (16)

be satisfied. The equations (1l6) are a necessary bdbut not
sufficient rsquirement for the existence of a mirimum, and it
can be demonstrated that they give an upper bound for the high-

er eigenvalues. (See for instance L. Collatz, Eigenwertprobdlen,

2. edition, pg. 274 etc.) This method is usually associated
with the name of RITZ.

{(11) One tries to make the coefficients of the higher eigen-fre-
quencies (cz.c3....) small with respect to that of the funda-
zentsl frequency Cq- This leads to the method of successive
approximations (Iteration). After having found the first
eigenfraquency one will eliminste its componsent from the
Rayleigh coefficient and then again try to make Cq:Cpneee
small in comparison to s Thus one cbitains in succession the
first, .econd,.... modes. The great disadvantage of tLis pro-
cedure is the fact that it is very cumbersome to "sweep" (or
to free) the Bayleigh coefficient of the compornents of the
nodes that have already been iterated. As the numeriecsal labor

increases rapidly for the righer modes successive iteration

nethode will not e treeted here.

é
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¢) $hs Ritz Procedure

Lot y(x) = «{x)+ B{x) ve expressed iz the form of a series

n
y(xiag,a ... 0h8,) = Sr’ By vi(%) = gy = &fag=) « @A) (17)

with  y,(x) = o (x) + B, (%) .

The functions yi(x) have to be linearly independent and thsy must
satisfy the conditions of constraint (boundary conditions). Ther B,S,V,R
become positive definite quadratic forms in the coefficlents &4, (gee also

Collatz, Eigenwertprobleme) and ars given by:

V[.y,jl = V{a,a] =Vidiay ;o owith Y V[y;,yﬂ

! t 8
RIg,gl: Rlaa)=rjaia 5wt 1= rle. 6] (28)

Bl o] Blae)=bjaa; ; with b= Blxl,o]
S(s,61: Sla.a): sjaiq, it sy = OlEL6)

From (1C) it is obvious what V. zV[y;,yj] means: it is the value
o

of the following definite integral (to te extended over tlhe bean) ,

U’Lj = VH&'YJ] = j‘)Ly‘dex = 1{;‘- : ele. (18')

The matrices (Vij)’(rij)'(bij)'(aij) are a1l symmetric. Thus the
characteristic values are ail real. Thke Rayleigh coefficient E{ , is an

extremum if the equations: BK/aaL - () are satlsfled, or multiplying both

gides with (V + R), one obtsins the more convernlient form:

AEROQ-ELASTIC AND STRUCTURES RESEARCH
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(V+R)%§1 = %{B*S) Z\V+R)} 23&% )Ltz e, < 0 (19)

For, if one calls B + S = Dand V+ R = B, one kas E = D/ which is the
furction whose extrema have to be determined. and it 1s a furction of the
ayls.

The system of linear homogeneous equations (19) can have a non-
trivial solution only ir the deterninant of the coefficiernt matrix is zero.
This gives the so-called secular eguation (frequency equation):

det [uij' Eti,j] o) , ) o

where ui.j = (b + a)ij and ti,j w (v + r)ij

It should be observed that the coefficlents of RITZ's determinant
(20) can be obtained directly from the coordinate functions y;(x), as ie

evident from equation (18), and it is not necessary to carry out the differen-

7 tiations with respect to the &;'s. As the matrices (uij) and (tid) are sym-

metric and (tij> is positive definite, all roots ¥ ; &re real and they can

be ordered according to size:
NEL=EL £ ..o 2 f

By & kmown theorem of alzebra, the ratlios between the coefficients
8.y tbat bslong $to 2 Ritz value ér are equal to the ratios of the cofactors

of eny row or column of ; uij - tij Lo
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m

"we corresponding solution functions Y, (x) (or approximations %o

the ratural mode shepes, as they are usually called) are giver by:

T (x) = 8. yi(x) (21)

The determination of the a.y is equivalent to the sirmltaneous transformation
of the matrices (uij) and (tij) into diagonal form.
Tre following lemma is added without proof. (It can be verified in

a wey similar to that used by H. J. Mahly in vol. 24 of Ergebnisse der szakten

haturwisserschaften).

The Ritz values Ei are greater than the corresponding exact eigen-
valuss A 1» but they are not greater than the next higher sigenvalue 5\1 + 10
If ore adds arcther function Toe1 to the Ritz expansion, which is linearly
independent of all FyreesTp then the Ritz values 4?/1 of this augmented
system can only be smaller than the corresponding ones of the initial system
xgi‘ but they cennot be less than the next lower value A . . of the initial

i=1
4 1. I

I S

LY. A A

system.

i

it is also possible to prove here that the characteristic vidrations
are no longer orthogonal, i.e. that the inner product of any two different
ones, multiplied by the squars root of the mmas density distribution function,
does rot va..sh any more. This proof will be given in the next section, how-
ever, wrere it will be less abstract. The rsader can find criteria for the
convergerce I tre procedure in the paper by K. J. Mahly which has alrsady

teer custed.

AERO-ELASTIC AND STRUCTURES RESEARCH
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d) Ths Choice of Coordinete Functions for tihe Ritz Procedurs

it bas beer shown that Ritzfs procedurs requires that & set of n
linearly independent functions yi(x) be chosen which must satisfy ihe condl-
tione of comstraint of the problem. The choice of tkese functions will affect
the converzence and the exactitude of the procedure very mcih. If one hag,
by pure chance, selected the eigenfunctions as coordinate functions, then the
method would be exact. The closer the agreement of the assumed functions yy
15 with the eigenfurctions, the better the convergence will be. It 1s now
wery easy to find sets of linearly independent functions - that are even
orthogonal - which satisfy all boundary conditions and which are very close
to the actual eigenfunctions, i.e. the eigenfunctions of a uniform beanm,
negliecting shear and rotary inertia effects, with the same conditlcns of con-
straint as the one to be analyzed. (K. Hohenemser & W. Prager, Dynamik der
Stabwerke, Springer 1933, have discussed this at great length and have shown,
by many exmmples of structures with very uneven distribution of mmss density
and moment of inertia per unit length, that the so-called uniform beam modes
are the best coordinate functions to use.)

Tavles for uniform beam modes can be fournd in many text books,

notably Lord Bavleigh., Theory of Sound. and in the text mentioned abova. Ex-

tensive tables are added to thises report.

Equation (4) shows that it is also recersary to know the dending
deflection and shearing deflection separately, and thus the problem arises
as to how to obtain X(x) and (3(x). if tneir sum y(x) together with the

elastic properties of the beam are given. From equation (3) one notices that

[k 2 Y e Uh-ndi . R T T NI T T TRETOTY 8 VY NEY

RUCTURES RrpocAanrtn
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both 4 and Q have %o be obteined, in ordsr tkhat & and (5 can be obtained

axis, §Q and M are given as firsi and second integrals of o

X x X
-—dex ; M=j@_dz =—fd7t§{)di . (22)

Differentiating (4) twice with rsspect to x, togsther with (5) and (22), one

§
g
% Yy integrations. In terms of a loadinz intensity p{x) per unit length of besa
% obtains the following general relation between deflection y(x) and load inten-

sity p(x):

500 = Jou fltsen) [ ptx = [lanson) [ (o)

which reduces, for prismetic bars, to
2 i EI
S -k erf e B o

{See for instance S. Timoshenko, Strepgth of Materials, vol. 1, pg. 171)

The solution of (23) for p(x) with a given y(x) would be a very
cumbersome undertaking and could, in general, not bs carried out analytically.
But remembering that the Ritg procedure requires only functions that satisfy
the beurndary conditions, and that the uniform beam modes are utilized because
they insure rapid convergence, one can modify the problem slightly and obtain
o (x) and (5 (x) by the two following procedures:

(1) Take the mode-lcads of the uniform beam. These are the static

loads that produce the mode deflections. From these one
obtains the bending deflection ¢t and shear deflectlon 3 .
(The first eight mode-loads for uniform beams with various

toundary conditions are tabulated in ihis report.)

AEROC-ELASTIC AND STRUCTURES RESEARCH
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{41) If uniform beam mods-loads are not available, estimate the
loezation of the nodal poinis 2nd arply sl{ernats uniform loads
between these nodee. Then, caleculate the berding - and ahsar-
ing deflectione under these loads and use them in the Aitz
expanaion.
The following pilcture illustrates how the third of the linearly

independent functions, yB(x) = Ol3(x)+ By(x) cax be obtadned.

o o Zz
e e ﬁ"‘ﬁ\%—, 4+ %"7 é’x AN )
Y Y AR
\ 7 \
7 .

A

oL (%) Bx)

(The load-intensities pl,pz.p3 can be equal, or can be determined such that
the points Nz and H3 do not undergo any static deflection.)

The underlying i1dea of this vprocedure is that these deflection lines
will roughly represent the natural modes and thus one is assured that the RITZ

values 451 are close to the actual Ai and that the procedure converges

rapidly. The expansior coefficients (or perticipation factors) of the r-th

linearly independent function yr(x) in the r~th natural mode:
\
T.(x) =a, ¥; (&

will then te such thai{ the factor 8., 18 much larger than the other arj's

(where Jj # r). Thls means that the matrix (aij) is almest a diagonal matrix,
1t 1s, however, not necessary to choose the n linearly independent functions

in this way, and one could, for imstance, also selact the deflection lines

AERM
AT R

a1
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due to & point loed thet is stationed successively ian n different points.
(It 18 interesting to xmow that the a-th natural freguency of vitrating Deams
is completely characterized by the location of the nodel points. In beams with
both ends supportsd one must not count one of these. The proof is given dy
K. Hohenemser & W. Prager in ZAMM, 1931, vol. 11, #2)

The RITZ procedurs offers the advantage that it provides the analyst
with relatively good approximations to the frequenciss and the mode shapes. It
bas the dlsadvarntage that the error in the epproximation camnot be estimated,

and also that, if one adds snother function yn to the set of linearly in-

+1
dependent function {yn} , 811 the labor of solving the frequency equation (20)
has to be repsated. It hes been mentioned that this addition of ancther coordi-
nate function can only improve the results.

3. Integral Equation Methods

a) Influence Coefficients

Consider a beam as defined in section 1 of this chapter. If this
beam is acted upon by & concentrated load P which is perpemdicular to the bean
axis and located at & point designated by "Jj", ther it produces at a point #if
a deflection 813 end an angular rotation O g4+ Similarly, a couple at 240
caused a deflection }913 and an angular rotation WU at "4". The concen-
trated ioad and ths couple shall both have the magnitude one.

Pormulas for these influence coefficisats can easily be derived
from the equations of virtual work. Let Mv Q (end Hk' -Qk) be the bending
moment and shear force in the besm due to & unit force (and a unit couple) at
"k", Then the above listed influence coefficients are given by the following

integrals to be aextended over the bYean:

AFROC-ELASTIC AND STRUCTURES RESEARCH
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: 8{, = J‘(M; M /EI)dx + j(Q; QJ-/GA,.)dx , 1 :

& = j‘(f"-;‘iM.i/EI}(J“x +j(aaQJ/64F)d" ; -
1

5, » J(mF e+ (@B eaddx

AT A

¥, = [(AMendx + (@@ adds

They obey Maxwesll's reciprocel laws:

§15 = 830 Wiy =V Oy = Uy
as is avident from (1). 1If the point ®i® has the coordinate %y = x and a4
tae coordinate Xy = £ . and if both x and € are considered to be inde-
pendent variadles, ther the four influence coefficients become influence
functions.

b) Influence Functions (Green's Punctions)

Let the irfluencs function corresponding to the coefficient CS;;. be
designated by g. It is clearly a function of xand § ¢ g = g(x; &), and in

view of Maxwell'!s law it 18 symmetric in the variables, hence:

glx; §) = g(&; x)
The determination of g(x; %) is sufficient, for, the remaining influence
functions caa be obtained by partisl differentiations.
Lemma 1: The influence fwiction of angular rotation due to & point load is

equal to the partial derivative of g(x; &) with respect to x.

AERO-ELASTIC AND STRUCTURES RESEARCH
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The following sketcn illustraces this.
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In ordsr to obtain the dsflection in-

"
B
%
|

12 L | 0O AT E XU T TSl i A R TR S T Rl %

£ - :
X o 1 =1 fluenca due to & unit moment, observe :
|
_— that & unit moment can be coneidered
~ 9’\’\)@) /"/
AN
BN | s as the limiting case of & couple,
)
\'\" Bg(x §) Pat = m , whick ig subjected to the
ax
\{ restriction: Zv'mi. O((‘PAE) =M.
a5
The deflection at x due to a load P at
£+nE  is given by glx; £ + AoE ) P,
— ——»Qae:vlp and thus the deflection at x due to the
T couple P A&  is equal to P{g(z;g + 48)
P -g (x5 8 )} . With P =M/at this
takes the form: %{‘s(x:ﬁmt)-3‘(74;\&)}/:6
In the 1limit A§—~0 ths deflection at
x dus to & moment Mo at £ :
, g(xigrat)- g(xig) _ ¢ 29 (x:.§)
?lm. m e ! T ;
AR~ O Ag 35

consequently:

Lemme 2: The deflection influence function due to & unit moment &t § is
equel to the partial derivative with respect to & of the deflec-
tion influence function for & unit force at £

Finally:

lemma 3: The influence function for the angular deflection due to & unilt

AERO-ELASTIC AND STRUCTIURES RESEARCH
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PAGE 43
£ of tne deflaction influence function for a unit force at &§ .
The following sketch illustrates this. e
A
It ie pointed out that the relations =
just derived ars not limited to the Graen's AR aa(x;f) -/
~ £ i
'
functions for the deformatione. They are equally — — 3-\@\__7/~
b 4 th £t sh force and bsnd N 5
valid for those of ths shear force ending . ¥q(x:¢)
moment .

\\/ dx 3§

N\

Lemma Lo

The influence functions for the sheer force and ths bending moment
of a beam which is undsr the action of a unit couple located at

x=§ are the partimsl derivatives with respect to § of the

corresponding influeance functions due to a unit force at ¢

The proof follows from the remark that one has only to require tuiat

the limiting value of the coupls P 4% be finite and equal to T .

" The adjacent figures show first a beam with

' , s unit force at & and the correepondiag

bending moment - and shear-diasgrams, in which

& value at x is marked M(x; § ) and Q(x; § ).

AEKO-ELASTIC AND STRUCTURES RESEARCH
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E. Next is the same bsem with a unit couple at

g R &

Ea K € and with %hs corresponding discrams for
k- e ] )

: A the bending momant M and the shear force

?— i i

: -

; Note that ths shear force is always the

thoe only necessary to obiein the Green's

function of the bending moment due to & unit

force. The otherse are then partial deriva-

i ' a's‘”;)l_’_'%l—ijl’é ””T! [ tives of it.

Somatimes the evaluastion of the Green's

function due tc & unit couple is emsier than

:*44 | the calculation of the Gresn's function duse
to a unit force, followed by partial differ-
entiations. Thern one will, of course, de-~ H
termine it directly.

Formulas for the Green's functions of uniform beems azre compilsd im R. Roark,

Formulas for Stress end Strain, McGraw Hill, Hew York 1943. The following
exaxple wae taken from this book.

Illustration: uniform beam, simply supported, acted upon
w_' e —§ P=1 by & unit force, and also by & unit eouple.
i )y
e M, Q,y & X The Green's functions, in the interval from
% —4 — zero to £ , are given b
om:i H g BZl y:
N
s may <« &

AERO-ELASTIC AND STRUCTURES RESEARCH
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Mix;e) = x(L-§)4 Mo %
Qx;5) = (£-£)/4 q=-Y
yg) = xsll2le-gx) foert y= “*[«§2~3s*-24*-x‘]//4,fzz

One verifies here readily that the quantities indicated by a bar are ths
§ = derivatives of those without a dar.

¢c) Foxmulation of the Intesral Equation

Suppose that tha deam oscillates freely. As shown in section 1,
every slice located at x = £ is acted upon by inertia loadings which are
composed of the inertim forcs -}-L§d§ due to the transverse accelerstion
Yy and the inertis moment - TX'd§  due to the rotary acceleration & .

Let the deflection influence function due to & unit load at § be g(x; £ )

a8 has Just been established in section b). Then the load -/Ayd; at §
produces at x & differential deflection: —3(";?)#90‘

The deflection influence function g(xz; § ) is made up of two parts,
the deflection due to bending distortion only; o (x; ) and the deflection

due to shearing distortion only: (3 (x;§). Thus,

gxig) = o{x:§) ~ B(x;8) .

i According to Lemma %2 of the previous section, the deflection at
x due to a unit moment at § is equal to: ag(x;g)/&g’ , and consequently,

the inertia moment -Ta&’ds at § produces a differentizl deflection:

39(3 970{_ dg‘ 8t x. The sum of these two differsatial sffects is squal tol

é AERO-ELASTIC AND STRUCTURES RESEARCH
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dy = {g(x Oujde + —i——) 'dg}

One obtains the total deflection y(x) imtegrating over all the differentlal

effects:
t)y = - [ 0,6 (£ y(g) + M’z—(g)é&%g)\ dg¢
‘y(-“(ih 19 4 }" .y d¢ j ¢
a

The natural modes are the free harmonic vidbrations of the beam!

yot) = yE)srwt-¥)  and, with w*= A . one arrives at the integral equa-

tion for the natural modes of the beanm:

yix) = %§ 9(15);1. §)yis) + 39("42‘(6)“(9}# : (2)

Equation (2) is & homogeneous, non-linear integro-differsntial equation of the
Fredholm type. The function X (x) depends, as has been shown, in a compli-
cated way on y(x).

The equation can be simplified considerably if one sets: O(X) = y(X/,
i.8. if one nsglectes the shear effects in the rotary inertia terms. This is

Justifisvle, since for small vibrations and lover modes the functions y(x)

and X(x) differ only very little and their respective first dsrivatives are
practicelly aliks. Furthermore the approximation occurs in & term which is
only a correction term and much smaller then the first expresasion in the iute-
grand which represents ths deflection due tc itrausverse motlon of the bdeanm

only. (This question will be discussed in more detail in chapter IV.) With

AERO-ELASTIC AND STRUCTURES RESEARCH
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the eimplication da/dx =dy/dx , equation (2) eppears as

L
~

yix) = A }{9(ns)y(s)y<e> + éaaé&,flmg)%(ﬁ }dg : (
q -

One can sliminate the derivative dy/d¢  in the integrand by partial inte-

gration of the second term on the right and obtains then:

D :
O r _ b
yx)= Ab glxslu(e) y(&)ds - gg [’c-’(e)ig—g—‘“}y(i)df * Ej———)m)y(i)} % ,

£xo
or also:
b 3 £b
y(x_)=z{ﬂg(x DPE - 55 'r(s)a"‘ "’H;(z)d; + [—3;—-?(5)3(9] - (31
$-e

Introduce the abdbreviations:

G(x;§) = glx:g)p(s) - —-[ (g)_f?_l__} g g~ THEE aH(X £)

(&)

- egq(x:§
Hxi§)= o) 2220
of
and recall the notation of the inner product of two functions, thec {3t) can

be written in the compact form:

y = A[@y «nyl] (5
Note well that G is & function of x and § , a Green's function which is
pot symmetric, and y is & function of £ also, if it 1is in a round bracket.
This bracket is & short notetion for the definite integral of the product of
the factors inside, and, since G is also a function of x, which is not affect-
ed by the integration process, (G,y) must be a function of x. Similarly E
is & function of =z and § , and y is again & function of § , whenever it

is multiplied with another function. The vertical bar l indicetes that the

difference of the velues of the function Hy for £ =b, and § =8& s
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to be teken. Since x is not lnvolved in this process of sudtracting the lower
limit from the upper ons, Hy% is indeed a function of x. Consequerntly, :
both sides of equation (5) are functions of x alone. If the ailmplification

oL =2y 18 not made, equation (5) reads:

PR,

o b §:6
y<x)=){59<x E)(E)y (6) ds - j [T(E)-ﬂ—"f—)Joc(E)df +[—3——~=T(§)oéeﬂ } R
a 524 ]

From equation (5) one proves now without difficulty that the charac-
teristic functions are not orthogoual, for, let vy and yJ bs two eigenf‘unctionsg
and )‘i and 7\3 the corresponding eigenvalues, then the two following eque~

tions must be satisfied:

yi/A (Gyy) =+ Hyit ;

w/n = (Gsy;) + Hy:l '

Talke now the inner product of the first aquation with respect to yd. also

the inner product of the second one with respect to 74» sudtract the sscond

one from the first one, and note that (yi.yd) = (ya,yi) then one obtains:

(7\!—-;‘3‘(,-)(3;»33) = (Goy),y;) + (Hybs ) = (@b s) - (Byls y)

If one writss this out iz detail, it becomes:

b s kb
~
(’}L B ")53, y; dx =J§G(z £y vi(x)dsdx ~ 5 jG £) ¥;(8) yitx) d5 dx
‘ 2 va 2 2
{’b . b b
j [ (% §)}i;(§)j Jdy - {H(x §)y)\§] yimdx
a G, €=a

inverting the dummy variablss in the second term, and combining then these
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two intograls by ractoring out yi( £ )yJ(x), one gaets:
b bdb
(%;‘%)f’ Jodx = {;g [G("ii)“G(m)]jb(f)y,(i)d;dx
a a“a (é)
) VP
+ ([H(’(;S)tj‘ﬁ)yﬁ) - w)mwﬂ dx .
4 g:a
(‘For L‘fJ)

If the bDeam were supported &t both ende, then y would be zero at the ends and
consequently the second integral of the right hend side of (6) would vanish.
Since G(x; ¢) F G(£ ;x), one concludes that for th‘s case the orthogonality
cannot exist. If the beam is clamped at one end, then the second integral of
the right hand side of (6) will not vanish, and, in general, orthogonality
cannot exist. In a similar way one verifies from (5') that the eigenfunctions
are not orthogonal.

Only 4if rotaryv inertia effects are neglected, can one obtain ortho-

gonality with respect to a weighting function ).L(x) , for in this case,

equatior (2) reduces to:

b
y= = Rf g{x;8) p(8) y(5) d§ (7)

¥ith the new function 5' Sl 4 this becouses:

= )\5 9(7< 5}y (§) 45
: and if 5’1, yj and 3:; ' 'A‘, are two diffcrent sigenfunctions and their

corresponding eigenvalues of the prodlem, thsre follows:

S AR LG ; 5)0%) S D IAGEL

AERQ.ELASTIC AND STRUCTURES RESEARCH




MASSACHUSETTS INSTITUTE OF TECHNCLCGY
Dep&r@nent of Aeronauvtical Engineering

RS N S e 20

PAGE 50 CONTRACT NO.E5 ori - 07833

pua]
E
5

T

Haleiplying the first equation by ij(x). the mecond by ’571(:). integrating
oveT X betwesn the limite a and b, and subtracting now the second f£fr m the

first one of the altiered equations, yislda:

rPELEARY 0

, b b b
%) sse - |} lmoywne-gnagoiolds

2 ot
Interchanging the dummy varisbles =z and § 4in the second product and com-

bining it with the first one, thsre follows:
| b b b
('i - 3:)5 I %4x = é g{g(xis)— 3(5;%)} yil8) y;(») dsdx . (8)
a a .
In section b) it has been shown that g(x; €)= g(g ;Z), consequently the

right-hand side of (8) ie zero, and ome finds, that for i # J
b

j $X gy = 0 ;
h M
with §;= A Y. end Y; =MY; this equation yields the generalized orthogo-

nality relation {orthogonality with respect to the weighting function M Y

g px) Yi(x) y; (=) dx = Q (9)

or one may alsc state that the functions \,/; Yi and \//: _yj ere orthogonal

in the conventional sense. With the terminology of chapter II, section 2, it

is concluded that the eigenfunctions of the vibrating beam, neglecting rotary
insrtis sffects, multiplied by the square root of the mass density distribu-

tion function form an orthogonal set, which can readily be normalized. For,

& 1f: (JF_% ’ ’//IYL)= N’j: then:

P * .
(\é}/‘—f‘y'.?&% y)).—_ e‘j b4 (eil=1 3 CL)-’O {:’or LfJ)

AERO-ELASTIC AND STRUCTURES RESEARCH
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~
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{
Mo
which i3 ths statement that the set {EZ@ZT yn i8 ortho-normal.
*w

d) Approximate Solubicns of )
The integral equation (5), or (5!), can in general not be solved

exactly, and the problem arises as to how to find approximate solutions of

of linearly independent solutions ‘?J(x) - or oéj(x) - which satisfy indivi-

it. Assume that the exact solution csn be approxzimated by a linear asggregate
dually the boundary conditions of the problem.

This is again a RI?Z procedure. So let:
yox) = yo) = a; yjx) = GJ[@J(X)*[BJ(Z)] (11)
and introduce it into equation (5), which was:
y = A{(G,y) + Hy” , (5)

This ylelds: ajy, & A{(G,am-)ir- Ham[} = Ag i\(ﬁxbﬁ)*”],)} (22)

and one requires now that the left hand side coincide witbh the right hand
side at as mpany points xj as there are unknown coefficients aj, i.6. at n

points. (See section f) for motivation.) This gives & set of n linear homo-

N
J

513

geneour equations for the coefficients a.J.:

QY (%) = ;‘QJ{(G [%;;gliyjm) + HIx, gly L)
with the abbreviations:

}f = (yy) = (y; ) ’ a - ia,,az, a} r

AFRO-ELASTIC AND STRUCTURES RESEARCH
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N A\
()= { Jebal w1 ds)

i

1

1

N N T R 05 i B AT S il B L0 1 GG

X

(H;‘J: [H(Xiif)}‘j(g)]iz

;
g
g ‘

H

L.=GH |

(13)

one obtains the following generalized matrix sigervalue equation for the

veclior a :

ya = 2 L a (1)

This equation can ve reduced to an ordinary eigenvalue equation by premulti-

i
plying both sidez with the inverse of the matrix ke : L. ., which exists,

since ” L” is not singular; thus with !:L = E, Ea = a

L"ya:— A a

and with L;’y = B | where B® 1s the solution of the equation:
LX =V B-X (15)
-4
r one obtains the ordinary matrix eigenvalue squation:

Ba =123 . (16)

This homogeneous egquaetion has & solutiorn only if the determirant of the

coefficient metrix vanishes:!

AERO-ELASTIC AND STRUCTURES RESEARCH
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3 |

et [y~ 2 L] = \\§5§’ -abl=o0 .

13

(17)
Bquation (17) is the generalized characteristic aguatlon, or the lambde squa-

i tion, and, writtsen out in dstail, reads:
ju ‘?\-en N y:z'ﬂ-‘élt, e 3 ym-gj,,,
A e (S [ vas = O

E j,,, "A[m » yng, —}ir,\g, > e » .yﬂﬂ - ?\agnn

A |
1t is an algebraic equation in A vhose coefficient of A s equal So “ L[l
and whose absolute tarm is ]!q'y“ . Ths it ig an equaiics of the n-th dsgree

in A , if the matrix &= i8 not singular. ¥ith this condition aquation (16)

exiats and one can obdtain the characteristic frequencies from the sscular

equatisn:
‘m-% By Bin
Bago » | o
which 18 tns necessary condition that {16) possesses non-trivial solutions.
The matrix B is best obtained by solving the set of linear equations {15).
It is now necessary to exemine how the matrix L» ., eq.(13), is con-

structed. From eq. (4) ons finds:

Glxis) = g ) u(e) - éggﬁ) , Hix: §)= 7() ag;x.‘s)

vherae g{z; § ) 1s the deflection influence function due to & unit load at £ .
Zquation (3') states what integration has to be carried out. Ths 1j-th ele-
X mant of G ' GiJ, is the value of the following integral at a point with the

coordinate x z X, and with the j-th coordinate function yd(x):

AERO-ELASTIC AND STRUCTURES RESEARCH
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b
2gXi:f)
G, = ii‘guh,w(s)—ae[ﬂa) 2 J} y;© de (29)

The points z, are texen &t regularly spaced intervals over the beam axis. Leg

the point x = & correspond to L = 1, and z = b to 4 = n; i.8., let the lengtn
{b - a) be dividen into “n-1"% equal intervals. From (19) it is apparent that
every Gi,j is the differsnce of two values, namely the value of the intsgzrasl at
the upper iimit minus the value of the integral at the lower limit. But H

id
is a similar difference, viz-
£:4
_[ (&) ?2_(1*._9), (5) (20)
J
£:a
h and consequently GU and Hij can be combined to yleld 1,715 which appears,
§ written out in full, as:
ag+h
] 29(xi35) dalxi
= (ﬁg) ; zg‘ ] 5{ (fx‘,g)/‘_(;) —=[T(E) g } (5)ds + T 2% yJ(g} (21)
£:a

The procedure, outlined so far, is known as gollocation usins assumed
functions. It is, of course, not the only possible method for determining the

coefficients 8y as well as possidle.

Other Methods for Determining the Ccefficients aJ:

A more accurate result is obtained - but with more werk - if one
requires that not the ordinates of the approximating function be equal to the

values calculated from equation (12) at n discrete points (ususlly equally

spaced), but that the integrals over the n subintervals (usually of equal
length) be eqgual, i.e. the integral over the k-th subinterval of the left-hand
side of equation {12) shall he squal to the correspording one of the right=hand
side of this equatiocn. The integravion process has the effect of making the

mean values of the two functions of the left-ard right-hand side equal in n

AERG-ELASTIC AND STRUCTURES RESEARCH
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subintervals. TFormally this yilelds the following set of n lirear homogeneous

ooty lor s

equations:

X, (x.,
an)’jd’ = Aan {(G,y_,) + H}g‘]d}( (22)
A Ri-1
vhere:! iZh'Nﬁ = b~a , and usually Xy =Xy 5 = (o -a)/n ;

One cen, of course, write the values of ths integrals over the n ﬁ

subintervals a8 slements of matrices,
2
= glyidx ; §[<6 yd) * HV u ’ (23)
Koz
and put (22) intc the form: Ca=2 Da

or, Fa-’- Aa with F = B”c . (24)

The frequency equation associated with {22) or (2k) is given by!
IC-2Dj=0 = |F-2E}=0 . (25

Still another method for determining the factors a..j is one based
upon lemma 2 of ckapter I1l. It was shown there that a function is uniquely

determined by its expansion coefficients, particularly that the difference

of two equal tunctions (called the gero-function) must have vanlshing expan-
sion coefficients. ZFrom equation (11-22) it follows thmt these are zero, if
the componente of the zero-funciion with respect to all the members of a com-

nlete set of furncticns vonish.

i
O
[&]
Le )
o
T
i
o

(For, 8 - B'C
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{1 ﬂw‘l’*?"'ﬂr“ﬁi

In the present case, it is desired to maxe 2 y,j equal to AQJ{(GQ‘X’) + HyJ‘}

or, which is the same, thelr differenca equal to zsro!

ay, - Ag{.y) ~ Hyll = 0.

I's
Thus, if L(ﬁ,(")} is a set of linearly independent functions, J
)

(a-"yj -’Aaj{(s.yj)+H}3,} 9 @L) = O J i - }..2,.-.,3,..- (26)
must be satisfied for every i, and the aj have to be determined accordingly.
This equation can also be written as

a; (y;,9) = A @((er) + Hyl SOL) (27)

where i and J must have the same range iz order that the ad's can be deter-

mined. If both {y,'} and {{P.} were complete sets (with infinitely many mem-
bers}, this procedure would give the exact solution, provided the series 9‘3 yj
ware absolutely convergent. If only the first n terms of the sets are taken, |

ope obtains an approximation to the exact value.

Setting:
h;j = (b'JvS"i) » ’?aj = ((nyj)*H)ﬁl 9 50») ; (28) :

equation (27) can be written as:

Ha=2Ka . (29) |

The particulayr choice of the complete set has a decisive influerce

upen the quality of the approximation. Thas process Just dsscribed is usually

called the method of weightirg fusctions, &nd it is said that in eq. (27) the

inner producte of both sides with the weighting functions ;0 must be equal.

AERO.ELASTIC AND STRUCTURES RESZARCH
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Bxamples of sets of weighting functions: ‘
An easy set to work with are the functlious, E
o gl £ ., ..., @B (30)
which requires that the arsas of the curves repressnted by & g and

}\a {(6 yJ) + H}ﬂ]} with the xz-axis, and the first (n-l) moments of these
areas sbout the y-axis ars egual.
Another convenient set is that of the coordinate functions used in
the RITZ expansion,
Fyr Fpr Fgo oo Fyd (31)
and, if they are orthogzonal, H of equation (29) reduces to a diagoral matrix

whose elements are the norms of the yd’s

. d‘ fe) . o
d, -
Da‘—' ﬁKa with D= O g : ;df(y;;){,‘)’f\f}’; . (32)
o O e n

Premultiplying both sides by the inverse of the disgonal matrix: D

and setting A= 32!— , there follows!

D'Ka=7a , o Ma-7a (33)

-1
vhere M = D K. The inverse of a diagonal matrix is simply the matrix
obtained by replacing the diagonel terms by their reciprocals, snd is there-

fore again & diagonal matrix: » Jdo 0N

. 3
— B .
- ! .
e

o ... Yd,
Recalling the multiplication rule of dimgonsl matrises with metrices (eq.l0,

A -]
page 6), it 18 sesn ¢that the matrix M is obtained from the matrix ?& by

dividing every row vector of % by the corresponding elament of ths matrix

AERO.ELASTIC AND STRUCTURES RESEARCH :
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¥rivten out ia detail:

/‘" kr/& hl/di
[ . /
. i Ry/d,  Rarf/ds

Rury/
- Rzn//dz
D K- ~

\i\'-\ Rnr dn an/{n £t

The order of the characteristic valuee‘(‘%? = ﬁ%ﬁ ) 48 now reversed.

R /o |

’

One could, of course, also have used an ortho-normal set,
(¥ry) = &
in the RITZ expansion and would then have arrived directly at eg. 33.

These last methods are sometimes called methods of weighting
fupctions.

The methods presented so far are based upon the _ssumption that the
integral equation (2), page 46, (which is to be solved) can be put into the
form (5) in which the first derivative of the unknown function does not appear ﬁ
(see eq. 3'), and where the linearization o’ ;——'y’ has been performed. The
elimination of Y’ was aclieved by & partial integration, and in carrying this
out it was mecessary to calculate the partial derivative with respect to £
of the Green's function H(x; £), as defined in eq. &4, pg. 47. In applications
it is often diffiecult to perform this differentiation, and in cases where it is
aagler to obtain the influence functions numerically in the foerm of & matrix
(wbich is merely & function-table listing the deflections at & certain point
due to & unit load at various other points or the same point) one would have
to perform the differentietions numerically alss. These are relatlvely cum-
bersome and, as with all differentiations, rspresent n loss of accuracy. Thus

£ETNEIA R L QPO
ALRU-LW 1%
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i
1

it is desiradle to treat equation (2) directly without linearizing it and

wvithout transforming it into the form (5!'), pege 47. This raquires a modi-

B R LT T N LS R T,

fication of the mathods that have bsen cutlined, as is shown in the section

bsalov.

e) Approzimate Solutions of the non-linear
Zquation

Phe equation (2) of seection c) (pe. U):

b
. ! ag(x; §) d%(g)
yx) = kﬂg(x,sw.s)y\s) +—%§‘——f(§)7§——}df , (2)

where g{x; §), dealx;s./3% , )&(&) , T(¢) are known functions, has to
be solvod.
Let the unknown function y{x) = o (x)+ B(x} be approximated by

a RITZ expansion:
Yy ¥ ) = aye) = gfoy () - 8, (x)J s (12)
Ji T % TR ’
where ths coordinsie functions yd(x) individually satisfy the boundary condi-
tions, are linearly independent, and are preferadbly rough approximations to

the natural modes. Take them, for instance, &s squal to the deflectlions of

the beam due to the

tiona.
The stetic mode-loads of non-uniform bsams, neglecting the influences

of shear and rotary inertia, satisfy the equation (see eq. 4!, chpt. III):

(EIy/) = & K o= 12,0000
¥ = wpye

ammmmm«.n RS VAR MG
&
:
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The static deflection of ths sams beam dus to & load p(xz) is given by

(B1y®)®* = T

Comparing this squation with the preceding one, it is spparent that the

natural modes are identical with the static doflections due to the loads

P = WMV
for, the equality of the right hand eides of beth squations nececsitates the
squality of their left-hand sides. The loads Dy, 8Te the so-called static
mode loads.

It has been shown that the function {s//—: yk} are crthogonal.
From the last relation it follows therefore that the function {P./‘//T} are
orthogonal. They can readily be normaliged.

For a uniforn beam with both ends supported the modes ars trigono-
metric functions (sine waves); other support conditioms yield producte of
trigonometric and hyperbolic functions. If the uniform beam is gradually
transformed into a non-uniform beam, the modes transform (as do the natural
frequencies) continuously into those of the non-uniform bean. Thelr shape
still resembles the sine curves (or modified sine curves) of the uniform
beam. The mode loads of the non-uniform beam, howsver, being products of

the normal modes (or norpal functions ae they are also cailed.) and the mass

dansity distribvution function /IJ. . ¥ill lock very much different f{rom the
smooth mode-loads of the uniform beam. The following picture shows on the
laft the (sscond) mode and the corresponding mode-losd of & uniform besm. g
On the right is the corresponding mods and mode-locad of & non-uniform beam

with the same conditions of support. g
AERQ-ELASTIC AND STRUCTURES RESEARCH
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,A.c’/‘y;
E; // _ \i—-ﬁ‘%AEa ci;_n‘.sfbﬂf
: hN - ///m
: TrnTll,p/ /L_iy; : ; p_i,nr‘\g/cﬂ:ﬁyx
Al — Rt iliny T
T (I
el iy

Ttme, it is indeed obvious that the product of y, times = (variable)
resembles M Y very much, &and it is concluded that the coordinate funec-
tions in the Ritz expansion (11) ought to be obtained as the static deflections
due to the loads which are the produst of the uniform beem modes times the
mass density distribution function A of the non-uniform beam.

The evaluation of Yy, and &, does not necessiste additional cal-
culations, since Y; has to be obtained as the sum of O and F%

After this excureion on & rational choice of the coordinste func-

tions of the RITZ expansion, thsre remains to show how equation (2) is to be

solved.
Two basically different methods will be discussed &8s iun sectilon 4),
vig.: gcollocation - and w function methods. Since the underlying

principles have already been established the aréument need not be long.

The integral equation (2), which must be solved, is of the form:

2 (ky) = o)} (@)
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whereain the adbbreviations:

——

b
(Kgy) = ig(x;f)/u(s)y(e) df (34)

e g

b
a (‘(J'f) a’d(g\
)= | S () 42l
a
g have beer introduced, and where the defirite integrals are written as inner
products. Introducing the two RITZ expansions

~ _ . V-7 A o

s J®Y =4 ; ol = &= Ay g (11)

into (2!) one obtains:

a;yj = ‘Aa.i{<K9_)’;,) * (M’ 0(3)} . (35)

The coefficients a‘j remain to be determined in such a way as to minimize the
discrepancy between the left - and right band side of this approximate equa-
lity. Since n coefficients 84 are %free?, one must prescribe n conditions

which have $o be satisfied!

collocation a8t n poirts is one possible set of conditions,

functions is another one.

Collocation at n dlstinct points transforzs the approximeve equality (25}

é into the following system of homogsnsous linear equations for the aJ‘s:

1
é AERO-ELASTIC AND STRUCTURES RESEARCH
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¥ith the matrices and vector definsd by:

Yz(yq); K=(Ke,'); Mf-(mg); §=f.a;} ;

(37)
Y= W s = (KBaslyytel) 5 my = (MU, <L)

the system {(26) takes the form:

Ya=1Na (36)

where the matrix
N=K+M (39)
has been introduced. The condition that (38) poseosses other than the

trivial solutior, @ = O , yields the lambda equation: H

“Y‘%N“:O (40)

for the characteristic frequencies.

As the coordinate functions y‘j and <'.>L:j ars not linearly dependent,

the matrix Y is not singular and one can premultiply both sides of (38)

by Y -1. With:

7 = %) (k1)

equation (38, appears as:
9% = A a ; whara P = Y M (&2)

§ The associated characteristic equaticn is:

P-2E[=0 =

AERQ.FI ASTIC AND STRUCTURES RESEARCH
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The matriz ? is best obtained as solution ng of the maprix equation:
\ -1
Y X- N X=Y'N =

vnere the n right hand sidss are ithe n column vectors ﬁj .
h{ function msth requires that both sides of eg. (35) be orthogonal

;
to n members of a complete set of functions L@P,.,} , viz.

2;(y;, 0y = Aq {((P\':yj) s 80«.} + <(M:°‘J)9 @c}} . (45) ?

¥With:

y =(ycj)i ) —(y 9‘p¢ j K;J ((K h) (}Dl.) Kij) 1 (46) i

Mijz((M'di)) I:PL); M = (M“J‘) ; N = K+M ;o= (K;j-&'M‘j)
this reduces to the familiar generalized sigenvalue equation:

ya ANa (47)

with the associated frequency equation {lambda equation):

|y 2N -0
sgatn, N 1s 0ot singular, neace one may also write

P& =)a (¥9)
wmora P= Ny MY -y

b4
il
D

AERG-ELASTIC AND STRUCTURES RESEARCH




MASSACHUSETTS INSTITUTE OF TECHNOLGCGY
Department of Aeronautical Engineering

CONTRACT NO. N5 ori - 07823 PAGE 65
with the frequency equation:
: =] _ 0
P-2E=0 . (50

If the first n members of the complete set are the functions:

xo| Il, xz, s e by xn‘“l,

it is said that one requires equality Detwsen the areas under the curves
representing the left - and right hand side of (35) ard betweer their first
(n~1) moments about the y-exis.

Other suitable sets are the coordinate functions of the Hitg expan-
sion. If these are orthogonsel a reduction of labor ls effected. The expansien
functions which are recommended for use are orthogonal with respect to the mass
distridbution function H ese velghting function. Their construction has
besr descrived in full detail on pg. 40.

Related to the weighting function method is the modified collocation 7

method - outlined on pz. 54,55 - where it is required that the integrals over
n adjacent subintervals of botk sides of eq. (35) ve equal. This method is,
of course, less cumbersome than the weighting function method itself, as the
integrations need not be carried out over the whole length of the beam, but
only over n small portions cf it. Numerical integretion will have to be used
in praectically all cases, end thus one integration process will yield the
eigenvalue equations, if only the cumulative results of this numericel inte-
gration are registered at the n points. For, truly, the differsnce between
the partial sums at zy and Ty g is sguel to the integrel of the function over
the interval x -1 to Xy

¢
-
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£} Oun _ths Convergence of ths Collocation Method

Collocatiorn metheds have been uwsed in the preceding ssctions with-
out. however, demonstrating that they lead to results that approximate irdeed
the exact solution. Raaders who are famlliar with the Fredholm thsory of in-
tezral equations will know that collocation methods are identical with the
classical treatments of linear integrel squations by Volterra and Fredholm.
(A complete presentation of these methods, and in the author'a opinion - the
clearest one, is given in G. Kowalewskl, Intesralgleichungen, Berlin 1330.)

t is instructive to outline the methods once more and to state the most im-
portant findings of the theory with respect to application.

Consider that the following (non-homogenecus) linear integral equa-—

tion has to be solved:
b

fx) - §K(x;y)f(dey = g(x)

a

in the interval a =< x =Y. Let x, be a point in the interval [a,b] .

Then at x = x, the squation:

b

b
{(XL) - sK(xa -,y) F(y)dy = 3(?0
&

is certainly satisfied. BReplace the integral by an approximating sum:

n

b
er(m;y) fydy = Z K("i:)ﬁ)?c(yﬂ AY;

|

AERQO-ELASTIC AND STRUCTURES RESEARCH
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and lst the interval [a,b} beo subdivided into n squal Intervals, ther one

obtains the following = sirultaneovs equations:
fxy = 2L K(xoy) Fly)ay; = g(x)

which are satisfied only appruximately by the exact solutions of the integral
equation. x; and y4 take on all values & +k(v-a)/n; (k= 1,2,..,0):
independently. With f, = f(x)¥axi ; g¢; = gxifax. ; Ky =~K(xiiyWax ay; ,

one arrives at the equations: % + X K f; = 9. or written out in fully
(1 + %(..) £, + K. o+ e + Knfn = g,
Kll 'F‘ * (l"’K;g) FL T e + Kzﬂ 'Fn = 92,
Kmn {‘, -+ Kﬂl ‘Fz * * (1+Khﬁ) 'Fn = g"‘

Cremer's rule gives the soclutions of this system as:

£ = De
- D (r = 1,2, ++v.0e, 1)
where D is the dsterminant of the coefficients of the unknowns, and Dr is

obteined from D by replacing the r-th column in D by {gl,gz. .gn} .

(1 +K,, Klz e Km (l+ K»,,\) v Kl."-' 91 K;.n-l st Km
Kl: (i’ K;g} Kzn K“ Kl,;‘-t 91 Kl,"’f e an
D = T 3 D’- = .o .
g Kr'H K’?‘l (i * Kan ’(m Kn r gﬂ Kﬂ re K"“
-
g ERC.ELASTIC AND STRUCTURES RESFARCH
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Suppose ths f.have been calculated, based on & subdivision of the

interval La,b] into n equal parts, and the values of the ordinastes are connect- 3

]

ed by straight lines, as the following sketch illustrates.

—~T xﬁ\\j The quesiion arises now as to what
- i happens if the subdivision is made
k= o | i {3 |4 - |
ai . g smaller and smmller.

This necessitates the investigation of the so-called Fredholm determinant of
the Kernel K(x,y) whiech is the limit of D a8 the number n of subdivisions of
{e,b] tends to infinity.

The Fredholm theory ascertains the uniform convergence of the

approximative solutions towards the exact esolution as the subdivisions of the

interval [a..b] become smaller and smaller.
This important result justifies the collocation method-

g) The Method of Station Functions (another metnod of constructing

coordinate functions for the RITZ expansion)

Quite frequently one finds the suggestion that the so-called station
function method yields suitable coordinate functions for the RITZ expansion.
This recommendation will now be examined critically.

Recall that the convergence of the RITZ expansion is best, 4f the
assumed functions are as close as possible to the actual eigenfunctions of the

problem under investigation. In sectlion e it was sugzested that the eigen-

T A T e e O A LA T 2 ot o T . N S K TN

Tunctions of a "neighboring® problem be used to construct an approximation to
the node-lcads of the actual provlem, and then tc calculate the cocrdinate

Janctiorns as the stailc deflections under thess loads. These offer the great

:
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advantage of being orthogonal functionm, thereby reducing the numerical cal-

culations to solve the matrix eigenvalue equation. But furthermore they dre

alrsady closs $0 the actual modes. The statlon function method is now deve-
loped.

Suppose the linear homogeneous integral equation (Fredholm equatisn

S T PO RO st LI

of the second kind) has to be solved,

b
foo = A fky Fpdy (51)

where the kernel K(x,y) ie given. As in the Fredholm theory, replace the in-
tegral equation by & sst of n linear homogeneous equations. The solution to
this set does not satisfy the integral equation exactly. Through the n points
an interpolatlion function can be fitted which permits the determination of
functional values at a8ll points detwsen a and b. Since n homogeneous linear
equations admit, in general, n solutions which correspond to the n 100tk of
the characteristic equation, one provides for this fact by writing ths solu-

tion as a linear aggregate of n interpolaticn functions:

foo = fox)g:(x) (52)

Because f(x) muat take on the value f(xi) for x = Xy, it is apparent that the

functions g{x} are subject to the requirsment:

gJ(XL) = €. . ‘-E? = (EU)] (53)

Jv | == L
Tke functions g, have to satisfy the boundary conditions and should, if

possidle, be identical with the normal functions of the problem. It is re-

PG

called that the kernel function is an 'elsmentary solution” of the protlem

AFRO.ELASTIC AND STRUCTURFS RESEARCH
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AR,

from which all solutiens cap be bvuilt up by meens of the superposition prin-

ciple. If hj(x) is a load-function, then
b

r
}@K(x;y) h;(y) dy

is 8 solution of the prodlem which satisfies al' boundary conditions, As &

v il il ¥ e AW gt A M e

matter of fact, this integral representz the effact dus to the cause hj(z).

Since every gi(x) has to satisfy n conditions, viz.

gi(x,): gi(’(i):' o= 9“7((;-,): O ; 9;(10&1 I 9;(XL¢|)= e = 9;(@.):0 3

2

and a total of n functions gy(x) have to be constructed, n° free parameters

must be chosen such that all these conditions can be fulfilled. Consequently

§ the g,'s must have the form:

b
gi(x) = a.‘JK(x,'y) hJ' (y) dy , (54)
a

where the load functions hJ(X) are given functions. They ought to be approxi-

mations to the mode-loads, under which condition the disgonal elements 8,y of
the matrix .A " (aij) will be much larger than the other ones.
Cne is now left with the task of evaluating the matrix A 80 as to
make 5i(x,j) = 844 Let 9 be the vectoer: {9;,91,-*-,@,3 ) h the
) . oh
vector tkz,l Ry, -, R"B with an element 23 < 3K(X,‘y)hj (S)d_‘j ; then the
a

equations (54) appear as:

g = AR (541)

ST O | O T { W OB I A D T S S W e ey

If x takes on the values Xyr Rpreoes Ry this becomes a set of n simultanreous
g equations. With the definitiocns: g (7{3)29&”,' , f‘ej(xi) = KJ'-. , they are cone
veniently written as @ = A %{ . (55)
AERG-ELASTIC AND STRUCTURES RESEARCH
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g In visv of equation {(53), G ie the unit matrix E, and thus A
E is the reciprocal of K :
-3
§ A=K (56)
(b
where a;;=(k;) snd k= JKOGAY) (y)dy .
&

(Note the order of the indices!) Once the e.w's are known, one may substi-

tute eq. (54) into egq. {51) to obdtain:
b

fo =2 jK(X,‘y)[Z ?(xa)gdy)) dy (57)
or also!

. b
fx) = %Z F(foK(x;y)ngy)dy : (571)

This equation has to be satisfied for all x, especially for x = Xy (3 =1,

..,n) and it possesses & non~trival solution only if

det. [—:} ‘ﬂ "'Z:ﬂ k;‘j } =Q ; (where f(‘xj) = fj) (58)

is satisfied. The roots of the frequency equation determine n sets of solu-
tione '(fi'} vhich, when substituted into (52) give a continuous approxima-
tion to the soluticns of the integral egquation.

The intagrations occuring in (58) will, in general, have to de
carried out numerically. Gaussian gquadrature yields the highest degrse of
accuracy for & given number of integration statioms. It will, however, sel-
dom be applisd, because the values of the Function will be glven at equal
intervals. In any case, the number of integration stations nae to be large

AERG-ELASTIC AND STRUCTURES RESEARCH
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snougl vou render the error of ithe numsrical integration insignificant compared
with the approximation introduced with (52).

It is mpparent that the station function method is very laborious.
In the present problem its application is not Justified, because exact solu-
tions of neighboring problems can be found readily and be used in a RITZ expan-
sion. The merits of the statlion function method lie in flutter analysis of
aircraft wvinge and not in the vibration analysis of teame. There the method,
extended to two independent varlables (planar problems) is really useful, for
usually only the lowest frequency is of interest and coordinate functicns to
be utilized in a RITZ expansion are not easy to find.
L., Limitation of the Anmlytical Methods

In section 1) of this chapter five restrictions have been found that
mast be imposed upon the vibrating beam in order that the present analysis be
applicabls and it had been stated that other restrictions, of dynamical nature,
would be formulated later. To ithese attention iz row turned. Recall briefly
the "integral methods” that have been cutlined, viz. the variationsal method
and the integral equation method. The.first of these states that the total
snergy of the vitrating body must be a minimum for every natural mode. The
second states that the natural modes are the characteristic solutions ¢f an
integral equation which represents all pesasible vibrationa of the dbody. The
unknown soclutions are writtsr as linear aggregates of imown vibrations and
the problem immediately arises of determining the degree of participation of
theee known vibrations in order %o build up the desired solutions., This leads

then to an algebralic proviem of solving a matrix eigenvalus equation. Zvery

solution vector corresponds to characteristic soiution of the protlsm. Czs
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wonld be tempted to bellieve that any desired degree of accuracy can be obtalned

if caly the Ritz expaneion (i.z. the linear agegregate) comprised a sufficiently

o VRIRL 8

lexrge numbar of linearly independent functions and corresponding particivation

factors. But this 1s not so! Suppose that 8 RBitz expsnsion contalns twenty

members end tkat the eigenvalus problem has bsen solved. Then one mey writs
down tne expansion of the, say, tenth natural mode of the beam and one kmows
from mathematical ressoning that this ought to be & very good approximation
to this mode, if the linear aggresgate represents the solutions of & neighbor-
ing prohlem. Let the bsam under investigation have a length of ten times icwe
average height. Under these assumptions a half-wave c¢f the tenth mode has &

length of about one tenth of the span of the bsam. Therefore, the nodal

points subdivide the beam into sections with a length to height ratio of
approximately one to one. Betwesn two adjacent nodal points the beanm deflects
as if it were & portion of a continuous vteam simply supported at the nodal
points. The simplified beam theory is, bowsver, rot applicable to such stubby
beams, since the stress~strzin distridbution acroes the beam is no longer
linear. Shear deformation becomes so great that the warping of the cross
sections can nc longer be neglected. Furithermore the normal stresses perpen=~ !
diculs. to the beam axis must be considered. This means that a solution satis-
fying the rigor of the mathematical theory of elesticity is called for. Un-
fortunately nc such vidbration solutions have been fourd and it is not poesidle
to compare the engineering solution with the elastlcity solutior directly.
Bendirg problems,. however, have buwen solvad in great aoumber and thsre it was :

found that &8s long &s ihe besm has & length of more than three times its aver-

age deptls, the englneering formulas give & reasonsable arproximation fo the

AERC ELASTIC AND STRUCTURES RESEARCH ¢
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behavior of the beam. The factor three cennot be taken raligiously, for it
depends on the boundary conditions, the gsometry of the besam. and the degwres
of accuraecy required. It is reasonable to assume that the vihratior analysis
obeys the same general restrictions es the statle daflection analysis and,
until more constrainine requiremsnis can be derived from exact analysis, it is
reconzended that only those modes should be calculated by the methods developed
in this report which yleld half-wave lengths that are long in comparisca to the
average depth of the beam (i.e. at least thres to five timee the depin).

The restriction Just volced should not mislesd thi: ernalyst to ths
conclusion that is is useless to carry many terms in a RITZ expansion, believ-

| iz that the higher terms represent the higher modes of the beam. This is not

true, for, if one had an analytical expression in closed form, say of the first
mode, and expanded this into & uniformly converging series and used the expan-

sion instead of the closed form in the celsulations, then certainly a2ll terms

the method is of a different nature. It states only that the lower mcdes can
be caleculated by the formulas given, because the equations are valid only im
a domain of low frequencies. BHigher frequencies and modes do sxist dbut they
cannot be calculated with a vibration theory that is based upon a simplified
bcam aralysis.

Furthermore, it must be emphasized that the beams to be investigeted
have to possess & symmetric cross section and the vitrating has to occur in

“he plane of symmetry. Zccentric, fixed loads on the berm &rs thus tc be

2

, of the sxpansion are needed to represent the mode properly. The limitation of
i
/
g excluded, as no couplirg of bending - and torsiosnal vibrations ie permissitle.

]
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Only recently R. Fellisg, Ingenieur- Archiv, vol. 19, pz. 231-254, (1951), has

develcped a rigorocus solution for the coupled torsion-bending vidbration of
prismatic, thin-walled, open-profile beams, taking proper account of the
warping stresses. An extension of this theory to prismetic bars of arbitrary
eross section encounters great difficulties which arise from the fact that,
at present, it is not possible to calculate the stress distribution in & pris-
matic bar of arbitrary croes section, with ardbitrary boundary conditions, gus
to bending and torsion. Efforts ought to be made in this direction, and the
above mentioned paper gives & good starting ground.

The findings of this report are summarized in the following:
Lemma: The metheds presented in this report are applicadle to atraight beams
with symmetric cross section which vibrate in the plane of symmetry. They
vield satisfactory results for modes whose half-wave length is long in compari-

son to the average helght of the beam.
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